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Some Remarks on Cohen-Lenstra Heuristics 

By Lawrence C. Washington 

Abstract. Cohen and Lenstra have given a heuristic model which predicts the fraction of 
imaginary quadratic fields with class number divisible by a given odd prime p and of those 
whose class groups have a given p-rank. We show that these numbers also arise by 
considering the proportion of matrices in GL,,(Z/pZ) with 1 as an eigenvalue and those 
whose 1-eigenspaces have a given dimension, then letting n - oc. In the last section we 
discuss some relations with elliptic curves. 

In a recent paper, H. Cohen and H. Lenstra [1] give a heuristic model which 
predicts that for an odd prime p the proportion of imaginary quadratic fields with 
class number divisible by p should be 

00 

1- (1 -p n), 
n=1 

and the proportion whose class groups have p-rank r should be 
CC r 

Pr2 (1 (I p-n) H (1 - k)-2 
n=1 k=i 

For example, the proportion with class number divisible by 3 should be .43987, 
which agrees rather well with numerical data. 

In the present paper, we show that the above numbers arise in another way, which 
at present does not seem to have a direct connection with class groups; but if it did, 
perhaps via some geometric interpretation, it might be possible to make progress 
towards proofs of the above heuristics. 

THEOREM 1. (a) Consider the proportion of matrices in GLn(Z/pZ) which have 1 as 
an eigenvalue. As n o x, this proportion has the limit 

00 

1- r (1 p-n). 
n = 1 

(b) Let r > I and consider the proportion of matrices whose I-eigenspaces have 
dimension exactly r. The limit of this proportion as n xo is 

oo r 
Pr2 (1 p-n) H (1 -k)-2 

n=1 k=1 

In the last section of the paper we discuss how these results relate to elliptic 
curves. 
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1. Proof of Theorem 1. Let n > r > 1. We count the number Mrn of matrices in 
GLn(Z/pZ) whose 1-eigenspaces have dimension at least r. The idea is to count for 
each r-dimensional subspace the number of matrices which act as the identity on 
that subspace. But a matrix with 1 as an eigenvalue of multiplicity r + 1 gets 
counted more than once, so we subtract off such matrices and recount them. 
Similarly, we adjust for those with 1 as an eigenvalue of multiplicity r + 2, etc. More 
precisely, let S1 denote the number of i-dimensional subspaces of (Z/p Z) j. It is easy 
to see that 

(p - pi - P) ..(pi _ p i-1 (pi _ W)pi`l - 1) ... (p j i+l _1 
(p - l)(p -p) ... (pi - 

p-) (pi - 1)(p - 1) (p- 1) 

(the numerator comes from choosing a basis of i independent vectors; the de- 
nominator is the order of GL,, which operates transitively on the possible bases of a 
given subspace). Observe that S/ = SjL,. Considering for example the i-dimensional 
subspace of (Z/pZ)j spanned by the first i standard basis vectors, we find that the 
number of matrices in GLJ acting as the identity on a given i-dimensional subspace 
is 

Ij=pi(J-i)JGL _1 i= ( pJ 
- 

p')( pJ - 
pi+l) ... ( pJ - 

pi-'). 

Let Xo= 1, and forj> 1, let 

j-1 

Xr- Srr++IjX r; 
j - 1 

io 

then 
p1-r 

Mrn- Sn+ I Jrn+ i Xir. 

l=0 

This is just the inclusion-exclusion type argument mentioned above. To see what is 
happening, consider a matrix which has 1 as an eigenvalue of multiplicity exactly 
r + 2. This matrix gets counted Srr+2 times by the factor Srn, Srr++2 times by Sr1" 
and Srr++22 = 1 time by Sr+ 2. It does not get counted past this term. The total count 
for this matrix is therefore 

Sr+2Xor + Srr+ 2 Xr + Srr+ 2 Xr 1 _ X2r + X2r = I 
r -x0)+x+ 1 2 

In this way we see that each matrix gets counted exactly once, as desired. 

LEMMA. 

yr = (J?+l)/2 (1 - pr)(i - pr+l) . (1 - pr+-l) 

I ~~~(P- 1)(pI 
- 

1) 
.. 

(Pi 
- 

1) 

Proof. The case j 0 is trivially true. Assume the lemma is true up through 
j - 1. We must show that 

O~ 1 - r SpJXrr_pJ(J?1)/2 (1 pr) ... (1- prJ-1) 
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Since Srr+7 = S/+i/, this becomes 

0=1 -I~ (pr+jI_ 1) ... (pr+i+1 - 1) +( l1)/2( pr) ..(1 pr?il) 

i=o (pi-i_ )* (p - )(p ... * (pi_1 

Replace pr by Y to get a polynomial 

Q(Y) = I - I (PjY - 1) ... (p'+1Y - 1) i(i+1)/2 (1 - Y) ... (1 -pi-ly) 

Let 0 < i < j and let Y = p -'; then all terms vanish except 1 and the term indexed 
by i. It follows easily that Q(p-') = 0, sO Q(Y) has j + 1 zeros. Since it has degree 
at most j, it vanishes identically. Therefore Q( pr) = 0, as desired. 

We are interested in the ratio Mr'/IGLnI. Putting together the lemma and the 
above expression for Mrn, we obtain 

Mr 
, 

r?i r+i i 

IGLI | =O IGLnI 

=1-r pi(i+ 1)/2(1 - pr) ... (1 - pr+i-l) 

i=0 (pr+i - 1) (pr+i - pr+i-l)(p - 1) . (pi - 1) 

Let r = 1. We obtain the following. 

THEOREM 2. The proportion of matrices in GLn(Z/p Z) having 1 as an eigenvalue is 

1 1 + + ( 1)n 

p (p - 1)(p2 - 1) (p ( n 

The proof of part (a) of Theorem 1 is now easy to obtain. We start with the 
identity 

(1 + aX)(1 + aX3)(1 + aX5) ... 

aX a 2x4 a 3X9 
-1+ +-+ 

_X2 (1 - X2)(1-X4) (1 - X2)(1 - X4)(1-x6) 

(see [2, Formula 19.5.1]). Let a - X and then Y = X2 to obtain 

(1 - Y)(1- y2)(- y3) ... 

y (-1) iyj(j+ 1)/2 

- 1 - + * * * + (-)iyi(.?.)/ I1- y (1- Y) (I1- Y.i 

Let Y = p1. We find that 

00 
-1p 

-3 

J - II( ) I _ p _ p p 

which is the limit of the expression in Theorem 2. This proves part (a). 
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Now consider r > 1. The proposition with 1 as an eigenvalue of multiplicity 
exactly r is (write r + i = (r + 1) + (i - 1)) 

Mrn -Mrn1 _ Srnjn n-r sn I xr -sn In Xr+l r r+1 = r r+ fi 
r?lri r?i r?, i-1 

+~~~ 

lGLn( GLn+ (= pGLn) 

I r th i t . used r a p r-t 

1 n-y r p)i(i--1)/2 (I - pr+ 1)... + (1)y ? () pi+ r) 

1) ... (pr+i - pr+i-1 - _ l 1 - p)1 _-1 

(r-r )/2 / nr ( _ )ip- ri 

= 1+ 
( pr (b) of T (o e 1(pi 

(1_p-r) . .. .... (1_p-1) 
P = 

1-p1) 
* ** 

1-p .......................) 

In the identity used abovenin the proof of part (a), let a -X2r+ 1 and Y= x2 to 
obtain 

(I _ y+1)(1 r+2).. = I 
yr + 

4 -1) 
J y rj +j(j j+ 1)/2 

+ 
( 1 y 1 ( _ r ) @ = 

I 
- y + 

+(I ) ... +I 
. 

Letting Y = p cor a we obtain 

Mn nMrn p _r2 

thath for pall (but ofintl manyre p1h. aosgopftixesonismr ct 

GL(p,where Zpdenotes the p-adic integers. It follows for such p that the points 
of order pnl yield the Galois group GL2(Z/p"Z), which acts as follows: Choose a 
basis for the points of order pn. Then vectors in (Z/p-Z)2 represent points of order 
pnl, and a matrix in GL2 acts in the usual way on these vectors. 

Let / be a prime for which ? has good reduction. If F mod 1 has a point of order 
p defined over Z/lZ, then the Frobenius element (actually a conjugacy class) for I 
fixes the corresponding global point of order p. Therefore, the matrix corresponding 
to the Frobenius has 1 as an eigenlvalue. By the Chebotarev Density Theorem, the 
density of those / for which there is a point of order p is just the proportion of 
matrices with 1 as an eigenvalue. From Theorem 2, this is 

1 -1 _ p2 -2 
p G 1 (p_ - )(p2_d 1) (p- l)(p2_ 1- 
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We note in passing that the case of an extension with group GL1(ZP) - Zp also 
arises naturally by adjoining all p-power roots of unity to Q (perhaps this should be 
considered as adjoining the points of p-power order of the multiplicative group Gm). 
The field F, has a pth root of unity if and only if the Frobenius for 1, namely the 1 
by 1 matrix (1), has 1 as an eigenvalue mod p which happens if and only if 
/ 1 mod p. The density of such / is 1/( p - 1), as predicted by Theorem 2. 

If there exists a geometric object whose points of order p correspond in a similar 
way to the limit as n -s oc of GLn(Z/pZ), and which relates to the class groups of 
imaginary quadratic fields, then it might be possible to use Theorem 1 to prove some 
of the heuristic estimates of Cohen-Lenstra. But it is not clear where to look for such 
an object. It seems that abelian varieties will not work since they tend to give proper 
subgroups of GLn(Z/pZ) as Galois groups. 

We now return to the case of elliptic curves in order to point out an ever-present 
problem with heuristic arguments. In the Cohen-Lenstra model for class groups of 
imaginary quadratic fields, a group G is given weight 1/lAut(G) , and the frequency 
with which it occurs is supposed to be its weight divided by the sum of the weights 
of all groups under consideration. Suppose we apply this to an elliptic curve E as 
above to see how often E mod / has a given p-group for its group of points of 
p-power order. The possible groups and the size of their automorphism groups are as 
follows ((n) denotes the cyclic group of order n). 

The group (1) has one automorphism. 
The group (pf) has p( pfl) automorphisms, so receives weight 1/+( pn). 
The group (pnf) x (p's) has automorphism group GL2(Z/pn Z). Using the exact 

sequence 

1 -* 1 + pM2(Z/pnZ) -* GL2(Z/pnZ) -* GL2(Z/pZ) -* 1, 

we find that GL2(Z/pnZ) has order p4n-4(p2 _ 1)(p2 _ p). 
Writing elements of (pf) x (pm) as ordered pairs, we find that the automor- 

phisms are given by (1,0) -+ (a, b) with p + a, (0,1) > (c, d) with p + d and 
pmc = 0. Therefore, there are 4(pn)4(pm)p2m automorphisms. 

The sum W of the weights is easily found by summing appropriate geometric 
series to obtain 

p(p4 - 2p2 + p + 1) p6 - p5 - p4 + 2p3 -p + 1 
W = I += 

(p - 1)4(p + 1)2 p6 - 2p5 _ p4 + 4p3 _ p2 - 2p + 1 

The heuristic probability that p divides the order of E, is then 

w- I = p(p4 - 2p2 + p + 1) =p-1 + p-2 _p-5 _p-7 + 

W p6 _ p5 - p4 + 2p3 -pp + p 

For p = 3 this yields 201/457 - .4398, which is slightly more than the correct 
value 7/16 = .4375. Of course, there are problems with the above heuristic model. 
Besides the fact that it gives the wrong answer, it also mandates, without any 
apparent reason, that the rank is at most 2. However, it could be considered as a 
reasonable attempt. Now, how can one judge heuristic models? First of all, there 
needs to be a "reasonable" model. Secondly, the predicted results must agree with 
the numerical data. The above heuristic could be regarded as fulfilling, to some 
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extent, both requirements, especially since it would take an enormous amount of 
computation to distinguish empirically between .4398 and .4375. So it easily could 
be the case that the above heuristic model for elliptic curves could be accepted as 
valid, even though it is false. 

Finally, we present some results which indicate that there is possibly a modifica- 
tion of the Cohen-Lenstra idea which works for elliptic curves. We calculate how 
often each possible p-group actually occurs, still under the assumption that the 
p-power points yield the Galois group GL2(Zp). 

We first consider (pf) x (pf) with n > 1. Suppose M E GL2(Z ) represents the 
Frobenius for 1. Then M I mod pfl SO M - I + p"N. It is easy to see that we get 
(p") x (p'f) for the exact p-part of E, if and only if N does not have 0 as an 
eigenvalue mod p, so det N # 0 mod p. Working mod pn+1f, we find that there are 
(p2 - 1)(p2 - p) choices for N mod p, hence this many choices for M. Since 
GL (Z/pn+ Z) has order p4n(p2 - 1)(p2 - p), the density of such M, hence the 
density of (pn) x (pf), is p -4n 

Now fix n > m > 1, and consider collectively the groups of the form (pk) X (pm) 

with k > n. Let M again represent the Frobenius. Then M = l + pmN with N # 0 
mod p. There is a vector v # 0 mod p such that Mv v mod pn. This implies that 
Nv Omod pn-m. Then N is conjugate to a matrix of the form (8 ) with not both 
x, y zero mod p. If y # 0 mod p, this is conjugate to (8?). The centralizer of (8 2) 
is the group of all invertible diagonal matrices. We work with M mod pn, hence with 
N mod p - "', so the centralizer of N has order 0(pf- 7)2 . Therefore, taking into 
account the p(pn-m) choices for y, we find IGnmI/4)( p-m) matrices M in this 
case. The centralizer of (8 1), y 0 mod p, is the group of matrices of the form 

a bv) which has order p(pn-m)pn-m. There are pn-m-l choices for y, so we get 
IGn - ml/p44 fp- m) matrices M. Adding the two cases together and dividing by IG l, 
we obtain the density (p + 1)/(p - I)p +3m. It follows that the probability of 
obtaining exactly (pf) X (pm), n > m > 1, is 

p+l 1 
p pn+3mf 

Finally, fix n and consider collectively the groups (pa) with a > n. The matrix M 
is conjugate to a matrix congruent to (1b ) mod pn, Suppose d # 1 mod p. Then we 
can obtain the matrix (1 0) mod pn, If d 1 mod p then b # 0 mod p; otherwise 
M - I mod p and E, contains (p) x (p). Conjugation by (b0 ?) now yields (' d)* 

The centralizer of (1 c), d # 1 mod p, is the group of invertible diagonal matrices 
mod p ", which has order p(pf)2, The centralizer of (1 1 ), d 1 mod p, is the group 
of matrices of the form (a a+bI-b) which has order 4(pnl)pPl. The combined density 
for these two cases is easily calculated to be (p2 - p 1)/( p - 1)2p'". Therefore 
the density for the group (pPl) is 

p -p-i 
( p 1- 

The heuristic model is seen to predict densities for the cyclic groups (pn) slightly 
higher than the actual values and, correspondingly, it predicts slightly lower densities 
than the actual values for the noncyclic groups. More precisely, if W is as above, 
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then (pf) has predicted density and actual density 

p -1 and p2-p-11 
p- I Wpn p(p l) nf 

respectively. For p = 3, we have .840/3n and .833/3n. For (pf) X (pf), the 
predicted and actual densities are 

3 p3 1 1 1 
and 

(p2 _ 1)(p - 1) W p4n p4n 

For p = 3, these become .945/34n and 1/34n. For (pn) x (pm), the values are 

p2 1 1 p + I 1 

(p _1)2W pn+3m 
an 

p pn+3m 

For p = 3, these are 1.260/3n?3m and 1.333/3n+3m 
Note that the ratio between the actual and predicted densities is the same, namely 

p3/( p2 _ 1)( p - 1)W, in both noncyclic cases. The significance of this is not clear, 
but perhaps it indicates that there is a heuristic model based on some modification 
of the Cohen-Lenstra technique which will yield the correct densities. 
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